Page 62 - 電路板季刊第109期
P. 62
60 專業技術 從表面改質到智慧監測:電漿技術的優勢與挑戰
(5) Becker, K. Microplasmas, a platform technology for a plethora of plasma
applications. The European Physical Journal Special Topics 2017, 226 (13),
2853–2858, journal article. DOI: 10.1140/epjst/e2016-60375-4.
(6) Bruggeman, P. J.; Kushner, M. J.; Locke, B. R.; Gardeniers, J. G. E.; Graham,
W. G.; Graves, D. B.; Hofman-Caris, R.; Maric, D.; Reid, J. P.; Ceriani, E.; et al.
Plasma-liquid interactions: a review and roadmap. Plasma Sources Science &
Technology 2016, 25 (5). DOI: 10.1088/0963-0252/25/5/053002.
(7) Kim, K. N.; Lee, S. M.; Mishra, A.; Yeom, G. Y. Atmospheric pressure plasmas
for surface modification of flexible and printed electronic devices: A review.
Thin Solid Films 2016, 598, 315–334. DOI: 10.1016/j.tsf.2015.05.035.
(8) Huang, Y. C.; Lin, Y. X.; Hsiung, C. K.; Hung, T. H.; Chen, K. N. Cu-Based
Thermocompression Bonding and Cu/Dielectric Hybrid Bonding for Three-
Dimensional Integrated Circuits (3D ICs) Application. Nanomaterials (Basel)
2023, 13 (17). DOI: 10.3390/nano13172490 From NLM.
(9) Zhao, Z.-H.; Gao, L.-Y.; Liu, Z.-Q. Review of Cu–Cu direct bonding technology
in advanced packaging. Nanotechnology 2025, 36 (26), 262001. DOI:
10.1088/1361-6528/addf54.
(10) Chang, T.-M.; Wang, C.-Y.; Hsu, C.-C. Development of a real-time and
multitasking system for long-term monitoring of aqueous metallic elements
using plasma spectroscopy. Talanta 2024, 271, 125688. DOI: https://doi.
org/10.1016/j.talanta.2024.125688.
(11) Wang, C.-Y.; Hsu, C.-C. Online, Continuous, and Interference-Free Monitoring
of Trace Heavy Metals in Water Using Plasma Spectroscopy Driven by
Actively Modulated Pulsed Power. Environmental Science & Technology 2019,
53 (18), 10888–10896. DOI: 10.1021/acs.est.9b02970.

